Practical AI for Growth Marketers

A.I has had a media resurgence in the recent past, thanks to the incessant coverage in every outlet and overblown hype for and against what it all means. Underneath the hyperbole there are real breakthroughs but also many challenges and practical considerations in using these innovations. This post by Crowdflower, a crowdsourcing platform used by many for improving the RoI of A.I projects puts it well when they say “A.I is a pragmatic technology that can be applied to solving today’s problems but you need to understand the limiting beliefs of A.I, and replace myths with truths”.

Growth marketers at B2C organizations specifically face formidable challenges in using A.I or machine learning in their day to day efforts. Data at their disposal spans many sources, updating via real time streams and likely runs into petabytes in size. Here are few practical considerations in realizing good RoI from your A.I project investments.

 

Simple vs Diverse data formats:

Today’s customers are tethered to their devices 24/7 and switch between them seamlessly. Advances in Big Data technologies like Hadoop have made it easy to capture raw data in diverse formats and store them across several different data stores usually called data lakes spanning SQL systems, NoSQL systems, flat files and excel sheets. As a growth marketer this is the raw gold mine you are working with and you should prioritize data capture in any format over shoehorning it to a particular data store or schema. A.I tools that you invest in should adapt to this mix of structured and unstructured data.

 

Real Time vs Batch mode:

The half life of consumer intent is getting shorter with each passing year, and customers expect “on-demand” experiences that are contextually relevant and personalized to them across every device. Growth marketers should prioritize simpler AI algorithms and processes that can adapt well to real time data than more complex batch mode solutions that may need several hours or days to execute. Pay close attention to training time it takes to build and deploy A.I models and how fast can they incorporate new data.

 

Complete vs Sparse data:

While it’s ideal to have every attribute and preference known about all users, in reality you will end up with incomplete or partially known data fields despite your best efforts. B2C growth marketers in particular should expect this from day one and invest in tools and solutions that adapt well to incomplete data. Take for example a user location, there may be a mix of user given location data, with device lat/long, ip to geo, inferences from content viewed or searches done and more. As a growth marketer you should prefer A.I tools that can adapt well to the mix of all this data and output best effort answers for widest user base than on few users with complete and clean data.

 

Size of training data:

Most A.I algorithms expect training data to be fed to them and the size and availability of training data is big obstacle to overcome to use them effectively. Certain class of A.I algorithms like Boosted Random Forests are better at adapting to the size of training data than Convolutional Neural Networks aka Deep Learning. Growth marketers should prefer those algorithms that can work with limited training data and have in-built sampling techniques to deal with disproportionate class sizes.

 

Black box vs Explainable Models:

A.I algorithms come in many forms, from easy to understand decision trees to black box complex ones like Deep Boltzman machines. Navigating the black boxes can be tricky, what works today cannot be said of tomorrow and need very careful tuning to yield short term results. Growth marketers should prefer AI algorithms that explain their outputs, and helps marketer understand various factors and weights given to them in realizing that output. Tools that iterate quickly and incorporate domain specific knowledge much more easily are likely to work better in the long term than hyper optimized black boxes with enticing short term yields.

When it comes to the nitty gritty of it all remember that A.I is no magic bullet but a practical tool to achieving your custom goals.

Keep calm and A.I on.

Re-Thinking Send Time Optimization in the age of the Always On Customer

Many email service providers tout Send Time Optimization as an add-on feature and promise marketers that they can tailor their marketing campaigns to the exact time their customers are expected to open their emails. It’s tempting to take that at face value and think it’s a silver bullet to improving your customer engagement. Our internal research, after analyzing over a billion emails sent through the Blueshift platform over last year, has shown that in the age of smartphones and always on connectivity, the notion of “Send Time Optimization” needs some serious re-thinking.

Stop Optimizing to “Open Rates”

“look at full downstream activity and measure what windows of time their customers are more likely to follow through and complete specific goals”

Today’s perpetually connected customers are much more likely to have many more frequent bursts of activity around the clock than a recurring habit of opening their emails at a certain time of day or clicking onto sites or apps at specific hour. Then what does it mean to do “Send Time Optimization” for marketers? Instead of optimizing for immediate opens, marketers need to focus their attention and look at full downstream activity and measure what windows of time their customers are more likely to follow through and complete specific goals than when they open or click emails. The true measure of success should be specific conversion goals or sum total of time spent on your site or apps.

As a results-driven marketer ask yourself: “Would you rather have someone who opened a message, or someone who converted/made a purchase?”

Enter => Engagement Time Optimization

Blueshift’s recently released Engage Time Optimization computes windows of time for each user where they are more likely to engage fully, rather than optimizing for immediate opens or clicks. We look at the sum total of time spent by each customer over a long period of time and rank each hour in the day based on time spent and how deep in the conversion funnel they got to. You can access “hour affinity” for each user through the segments panel under “User Affinity” tab inside our application dashboard.

Re-Thinking Send Time Optimization in the age of the Always On Customer - look at engage time optimization to optimize your campaign sends to further down the purchase funnel

 

You can use these “hour affinities” like any other user affinity attributes during the segment creation and tailor campaigns to specific audiences. For example you can create segments of users who prefer “morning” hours by picking 5am to 8am or those who prefer “evening” hours by picking 5pm to 8pm or any other combination. We believe this offers a powerful alternative to traditional “Send Time Optimization” feature by tailoring the campaigns to the customers based on their full funnel behavior than on immediate opens or clicks.

 


If you’d like to see a demo or request more information on Engagement Time Optimization, contact us via our site or email us at hello@getblueshift.com.


 

Obama on Technology, AI and an Optimistic Future

President Obama chatting with Ito and Scott Dadich

President Obama chatting with Ito and Scott Dadich

“This year, Artificial Intelligence will become more than just a computer science problem. Everybody need to understand how A.I. behaves.”

Recent advances in computer science and AI (more specifically advances in building and running large convolutional neural networks) have given a fresh fodder to the age old debate on how technology is replacing workers and making us all obsolete. The current political climate only amplifies the anxiety and generates FUD (Fear, Uncertainty, and Doubt) about our collective future. So it’s very refreshing to see President Obama re-framing the discussion in this Wired article and talking about common humanity and a confidence in our ability to solve problems. If one can ignore the media hype and peek below the surface there are real opportunities to build solutions to many seemingly intractable problems.

Machine learning, data mining and deep learning techniques can nudge us to lead healthier lives, change our habits and build stronger communities. Imagine AI powered tools that remind us in context of whatever we are doing in our daily lives to consider factors that we may have missed, overcome biases in thinking fast and slow, present information in ways that helps us build better financial portfolios that are in our long term interests, prevents us from being defrauded or phished or scammed online, helps us communicate with every one one the planet crossing language boundaries and more. That’s the optimistic future we can aspire to and it’s refreshing to see this possibility being talked about.

President Obama chatting with Ito and Scott Dadich

Read the full article on Wired.com